Finite Eulerian posets which are binomial or Sheffer
نویسنده
چکیده
In this paper we study finite Eulerian posets which are binomial or Sheffer. These important classes of posets are related to the theory of generating functions and to geometry. The results of this paper are organized as follows: (1) We completely determine the structure of Eulerian binomial posets and, as a conclusion, we are able to classify factorial functions of Eulerian binomial posets; (2) We give an almost complete classification of factorial functions of Eulerian Sheffer posets by dividing the original question into several cases; (3) In most cases above, we completely determine the structure of Eulerian Sheffer posets, a result stronger than just classifying factorial functions of these Eulerian Sheffer posets. We also study Eulerian triangular posets. This paper answers questions posed by R. Ehrenborg and M. Readdy. This research is also motivated by the work of R. Stanley about recognizing the boolean lattice by looking at smaller intervals. Résumé. Nous étudions les ensembles partiellement ordonnés finis (EPO) qui sont soit binomiaux soit de type Sheffer (deux notions reliées aux séries génératrices et à la géométrie). Nos résultats sont les suivants: (1) nous déterminons la structure des EPO Euleriens et binomiaux; nous classifions ainsi les fonctions factorielles de tous ces EPO; (2) nous donnons une classification presque complète des fonctions factorielles des EPO Euleriens de type Sheffer; (3) dans la plupart de ces cas, nous déterminons complètement la structure des EPO Euleriens et Sheffer, ce qui est plus fort que classifier leurs fonctions factorielles. Nous étudions aussi les EPO Euleriens triangulaires. Cet article répond à des questions de R. Ehrenborg and M. Readdy. Il est aussi motivé par le travail de R. Stanley sur la reconnaissance du treillis booléen via l’étude des petits intervalles.
منابع مشابه
Classification of the factorial functions of Eulerian binomial and Sheffer posets
We give a complete classification of the factorial functions of Eulerian binomial posets. The factorial function B(n) either coincides with n!, the factorial function of the infinite Boolean algebra, or 2n−1, the factorial function of the infinite butterfly poset. We also classify the factorial functions for Eulerian Sheffer posets. An Eulerian Sheffer poset with binomial factorial function B(n...
متن کاملCharacterization of the factorial functions of Eulerian binomial and Sheffer posets
We completely characterize the factorial functions of Eulerian binomial posets. The factorial function B(n) either coincides with n!, the factorial function of the infinite Boolean algebra, or 2n−1, the factorial function of the infinite butterfly poset. We also classify the factorial functions for Eulerian Sheffer posets. An Eulerian Sheffer poset with binomial factorial function B(n) = n! has...
متن کاملSheffer posets and r - signed permutations ∗ Richard EHRENBORG
We generalize the notion of a binomial poset to a larger class of posets, which we call Sheffer posets. There are two interesting subspaces of the incidence algebra of such a poset. These spaces behave like a ring and a module and are isomorphic to certain classes of generating functions. We also generalize the concept of R-labelings to linear edge-labelings, and prove a result analogous to a t...
متن کاملMatrices of formal power series associated to binomial posets
We introduce an operation that assigns to each binomial poset a partially ordered set for which the number of saturated chains in any interval is a function of two parameters. We develop a corresponding theory of generating functions involving noncommutative formal power series modulo the closure of a principal ideal, which may be faithfully represented by the limit of an infinite sequence of l...
متن کاملFlag Vectors of Eulerian Partially Ordered Sets
The closed cone of flag vectors of Eulerian partially ordered sets is studied. It is completely determined up through rank seven. HalfEulerian posets are defined. Certain limit posets of Billera and Hetyei are half-Eulerian; they give rise to extreme rays of the cone for Eulerian posets. A new family of linear inequalities valid for flag vectors of Eulerian posets is given.
متن کامل